MARCH 25, 2024

David Rower QUANTUM INFORMATION PHYSICIST

🛛 1 (818) 321-7127 | 🖾 rower@mit.edu | 🆀 davidrower.github.io | 🛅 david-rower

Education

Massachusetts Institute of Technology

PHD, PHYSICS (IN PROGRESS), PIS: WILLIAM OLIVER, RICCARDO COMIN

- Interests: quantum hardware, high-fidelity control / noise characterization with superconducting qubits
- Fellowships: MIT Dean of Science Fellowship, NSF GRFP, Quantum Info. Science and Eng. Network (QISE-NET)
- Teaching: 6.S987/8.582, Physics and Engineering of Superconducting Qubits (TA, Spring 2023)

University of California, Santa Barbara

Physics B.S., MATHEMATICS MINOR

- GPA: 4.0/4.0, degree from College of Creative Studies
- Thesis: Heterogeneous Vesicles with Phases having Different Pref. Curvatures: Shape Fluctuations and Mechanics of Active Deformations

Research Experience

Engineering Quantum Systems Group, MIT

PI: WILLIAM OLIVER, DEPARTMENT OF PHYSICS/RESEARCH LABORATORY OF ELECTRONICS, MIT

- Developed, benchmarked state-of-the-art high-fidelity single-qubit gates ($F \gtrsim 0.99997$), characterized pulse distortions and leakage.
- Implemented arbitrary-polarization microwave drives with fluxonium qubits to avoid counter-rotating effects for fast gates.
- Investigated the microscopic origin of 1/f magnetic flux noise through qubit dephasing with applied magnetic fields.
- Developed hardware and software infrastructure for qubit experiments (using direct-synthesis and mixer-based RF control) with automated calibration and data analysis.

Atzberger Research Group

DEPARTMENT OF MATHEMATICS/DEPARTMENT OF MECHANICAL ENGINEERING, UCSB

- Implemented a custom orientation-dependent particle interaction to investigate phase separation in biomembranes (C++).
- Created a numerical bending rigidity estimator for arbitrary star-shaped vesicles utilizing fluctuation spectra (Python).
- Explored effects of surface fluctuating hydrodynamics on the dynamics of Golestanian swimmers on a sphere.

Toyon Research Corporation

AUTONOMOUS SYSTEMS INTERN

- Developed end-to-end simulation and tracking framework for bearings-only tracking algorithms (Matlab).
- Contributed to various components of a multi-target tracking framework (C++).
- Implemented advanced dynamics models for use in the tracking of maneuvering targets.
- Implemented continuous integration scripts for automated documentation generation from repositories.

OpenEye Scientific Software

OPTIMIZATION INTERN

- Designed Hessian-based filters for shape comparison of small molecules (Python, C++).
- Developed convergence criteria for Newton-like optimization algorithms on novel objective functions.

Pedarsani Research Group

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UCSB

Built infrastructure for validation of autonomous vehicle traffic models with microscopic traffic simulators.

UCSB Enterprise Technology Services

STUDENT DEVELOPER

- Implemented Remotely Triggered Black Hole (RTBH) system via ExaBGP and Flask to replace legacy system.
- Designed RESTful API to communicate with the RTBH server.
- Developed real-time database logging system on Raspberry Pi to replace legacy system.

Cambridge, MA

2019 - Expected Aug. 2024

Santa Barbara, CA

Cambridge, MA

Santa Barbara, CA

Santa Barbara, CA

Santa Fe, NM

June 2017 - Sep. 2017

Santa Barbara, CA

Santa Barbara, CA

Publications

- **D. A. R.***, L. Ding*, et al. Circularly Polarized Driving and Commensurate Pulses for Fast High-Fidelity Gates with Fluxonium Qubits. *In Preparation* (2024).
- L. Ateshian, **D. A. R.**, et al. Fluxonium Qubit Coherence: Characterization of Temperature and Magnetic Field Dependence. *In Preparation* (2024).
- **D. A. R.**, et al. Evolution of 1/f Flux Noise in Superconducting Qubits with Weak Magnetic Fields. *Physical Review Letters* (2023). [link]
- B. Kannan, A. Almanakly, Y. Sung, A. Di Paolo, **D. A. R.**, et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics. *Nature Physics* (2023). [link]
- **D. A. R.**, P. J. Atzberger. Coarse-grained methods for heterogeneous vesicles with phase-separated domains: Elastic mechanics of shape fluctuations, plate compression, and channel insertion. *Mathematics and Computers in Simulation* (2023). [link]
- **D. A. R.**, M. Padidar, and P. J. Atzberger. Surface fluctuating hydrodynamics methods for the drift-diffusion dynamics of particles and microstructures within curved fluid interfaces. *Journal of Computational Physics* (2022). [link]

Fellowships & Awards

2024	MIT, QSEC Annual Research Conference Best Poster Award
2019-	MIT, Dean of Science Fellowship
2019-	NSF, Graduate Research Fellowship Program (GRFP)
2020-2022	NSF, Quantum Information Science and Engineering Network (QISE-NET) Fellowship
2021	iQuHack, Winner, gate-model quantum computing division
2019	UCSB Physics, Research Excellence Award, Highest Academic Honors, Distinction in the Major
2019	UCSB, CCS Travel Undergraduate Research Fellowship (TURF)
2018, 2019	UCSB, Research Internships in Science and Engineering (RISE) NSF REU, Atzberger Group
2018	APS, Future of Physics Days (FPD) Travel Grant
2018, 2019	UCSB Physics, Physics Circus Award
2015-2018	Andy Goldfarb, Andy Goldfarb Scholarship Award

Skills

Programming	Python, C++, Matlab, Bash, Mathematica, ੴ _E X, HTML/CSS/JavaScript
Software/OS	Sonnet, HFSS, Maxwell, Ubuntu, Git, Apache Subversion, Labber, ParaView, LAMMPS
Cryogenics	Dilution refrigeration, superconducting magnets, RF & DC wiring and filtering
Qubits	Transmons, C-shunt Flux Qubits, Fluxoniums
Credentials	TS (expired), Motorcycle License, Amateur Radio License (KI6PMP)

Outreach

2024	Mentor, Twin Cities Regional Science Fair
2020, 22-24	Juror/Head Juror, US Invitational Young Physicists Tournament
2021, 2023	Volunteer, Skype a Scientist
2023	Guest Speaker, Nueva HS Quantum Club
2020, 2022	Guest Speaker, Qubit by Qubit
2019-2022	Mentor, Summer Science Program (SSP)
2021-2023	Mentor, Undergraduate researcher, EQuS Group, MIT
2019	Volunteer, UCSB SBCC Physics Partnership
2017-2019	Volunteer, UCSB Physics Circus
2016-2018	Volunteer/Treasurer, UCSB Music Connection