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We explore the speed of convergence for two iterative matrix methods: a geometric multigrid
method, and the Gauss-Seidel method. To motivate the methods, we consider the problem of
solving the steady-state heat equation on a square patch with a source, and formulate this problem
as a linear system by discretizing the heat equation. We then discuss general iterative methods, and
further motivate the geometric multigrid method. A specific example is detailed, and the methods
are tested. The 2-grid V-cycle method converges much more rapidly than a direct Gauss-Seidel
method.

INTRODUCTION

Linear systems appear abundantly in every field of sci-
ence. It is important to know how to handle them in
different contexts. For small well-posed systems, direct
solvers may be used with no penalty. However, with
larger systems, direct solvers may not produce results
fast enough to be useful. In systems that are not well-
posed, direct solvers may suffer from the propagation of
numerical errors in row reduction and back substitution.
There are many methods to deal with this.

In this letter, we focus on a basic example of geomet-
ric multigrid. We motivate the method with the problem
of heat flowing on a square patch. The heat equation
governs the behavior of this system. We discretize the
equation, and formulate the problem as a linear system.
We then solve this linear system by direct iterative meth-
ods, and then by the geometric multigrid method. The
geometric multigrid method displays faster convergence
than the Gauss-Seidel method.

PROBLEM STATEMENT

Suppose we have a square plate on 0 < x, y < 1 with
a temperature profile given by u(x, y, t), and a source
of heat given by f(x, y) under it. We hold the edges of
the plate at zero degrees, giving the boundary conditions
u(x, 1) = u(1, y) = 0 and u(x, 0) = u(0, y) = 0. After
letting the plate sit for a while, u(x, y, t) → u(x, y). We
would like to find this equilibrium temperature profile.

RELEVANT BACKGROUND

Iterative Methods

Suppose we have a linear system of equations in the
form Ax = b. Decomposing A into B−C, we then have

(B−C)x = b (1)

Bx = Cx+ b (2)

x = B−1Cx+ B−1b (3)

Let’s consider the iteration

xn+1 = B−1Cxn + B−1b (4)

With M = B−1C and N = B−1,

xn+1 = Mxn + Nb (5)

Let x be the true solution satisfying x = Mx+Nb, and
let our error after iteration n to be εn = x− xn. Then

εn+1 = x− xn+1 (6)

= M(x− xn) (7)

= Mεn (8)

= Mn+1ε0 (9)

Notice that εn+1 → 0 when the spectral radius satisfies

ρ(M) = ρ(B−1C) < 1 (10)

Gauss-Seidel

We can decompose A into the negation of entries below
the diagonal, L, the negation of entries above the diag-
onal, U, and the diagonal, D, so that A = D − L −U.
For example, if A is a square matrix with shape 3 × 3,
we have
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A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (11)

D =

a11 0 0
0 a22 0
0 0 a33

 (12)

L = −

 0 0 0
a21 0 0
a31 a32 0

 (13)

U = −

0 a12 a13
0 0 a23
0 0 0

 (14)

Then, as detailed in the previous section, we have the
iteration

xn+1 = (D− L)
−1

Uxn + (D− L)−1b (15)

Heat Equation

With u as the temperature profile and f as the net
source/sink term, the heat equation simplifies to the fol-
lowing in two dimensions (on the xy plane):

∇2u+ f(x, y) =
1

α2

∂2u

∂t2
(16)

∂2u

∂x2
+
∂2u

∂y2
+ f(x, y) =

1

α2

∂2u

∂t2
(17)

We are interested in the steady state solution, after
the plane is given some time to relax. The heat equation
then becomes

∂2u

∂x2
+
∂2u

∂y2
= −f(x, y) (18)

DISCRETIZING THE HEAT EQUATION

Let us divide our domain 0 < x, y < 1 into a square
grid. We can do this by subdividing the x and y axes into
N portions each, giving us N2 grid points The spacing is
h = 1/N for each dimension. Let the temperature profile
u(xn, ym) = unm. Using a central difference scheme, we
have

∂2u

∂x2
=
un+1,m − 2un,m + un−1,m

h2
(19)

∂2u

∂y2
=
un,m+1 − 2un,m + un,m−1

h2
(20)

We can then reorganize our grid as a vector of length
N2, so our temperature and heat source vectors become

u =



u11
...

u1N
u21

...
uNN


f =



f11
...

f1N
f21
...

fNN


(21)

With this format, we can form a block tridiagonal ma-
trix

A =


D −I
−I D −I

. . .
. . .

. . .

−I D −I
−I D

 (22)

where

D =


−4 1
1 −4 1

. . .
. . .

. . .

1 −4 1
1 −4

 (23)

such that we recover the linear problem

Au = −f (24)

GEOMETRIC MULTIGRID

Motivation

We can now solve our problem by using an iterative
method on the system, although different iterative meth-
ods will have different rates of convergence. For our
problem, if heat in the system could be propagated on
larger length scales, and then refined using smaller length
scales, the convergence of the algorithm would require
less iterations.

Formulation for a 2-grid V-Cycle

Let’s consider the system Ax = b again. For a certain
guess xG, we can define the residual of this guess as the
difference r = b −AxG. Note, the error εh of our guess
causing this residual satisfies

A(x− xG) = b−AxG (25)

AεG = r (26)
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Suppose we desire a solution accurate to length-scale
h, so we solve our problem on a grid of spacing h in each
dimension. We use Ωh to represent this domain.

Starting with an arbitrary initial guess x0, we can relax
our guess with a few iterations of an iterative method to
obtain a more smooth guess xh. The residual of our
current estimate is then

rh = b−Ahxh (27)

Then, we can restrict our system to the domain Ω2h

rh → r2h (28)

Ah → A2h (29)

We can relax the system A2hε2h = r2h, smoothing the
error across our coarse grid. Then, we can prolong our
error back to Ωh

εh ← ε2h (30)

To correct our guess xh, we can simply add our pro-
longed coarse error: xh ← xh+εh. We can then relax our
guess a few more times on Ωh to get our final solution.

Other Cycles

The process described above involved only two grids,
and transforming once to each. More involved algorithms
involving multiple grids and multiple steps up and down
to each one can lead to other convergence properties.

Choice of Iteration

We can relax or smooth our estimate for the solution
of the linear systems we encounter by using any iterative
method of our choice. In this letter, we use Gauss-Seidel
with a set number of iterations during each relaxation.
It is important to note that this is not always the case.
By stepping to coarser grids, it is possible to reduce the
system a dimension such that a set number of relaxations
is just as expensive as a direct solver. In this case, a direct
solver would be used.

Prolongation and Restriction

To perform the transformations between Ωh and Ω2h,
we can come up with two operators. The restriction op-
erator,

I2hh : Ωh → Ω2h (31)

and the prolongation operator,

Ih2h : Ω2h → Ωh (32)

The restriction operator would change the dimension
of our grid from N×N to N+1

2 ×
N+1
2 . Similarly, the pro-

longation would change the dimension of our grid from
N+1
2 × N+1

2 to N × N . The details on formulating this
operator for a two dimensional grid are out of the scope
of this letter, but the interested reader can browse the
resources listed in the citations.

2-grid V-cycle Algorithm

1. Relax with initial guess Ahx0 = b on Ωh

2. Calculate residual rh = b−Axh

3. Restriction: r2h = I2hh r2h, A2h = I2hh AhIh2h

4. Relax coarse error: A2hε2h = r2h on Ω2h

5. Prolongation: εh = Ih2hε
2h

6. Correct final guess: xh ← xh + εh

7. Relax final guess: Ahxh = b on Ωh

RESULTS

With a source term

f(x, y) = sin[10(x− 1)2 + (y − 1)2] (33)

we compute the solution on a grid of size 21×21, using
5 iterations during each relaxation. We plot the solution
against the Numpy linalg.solve function, which gives a
reasonably precise estimate of the exact solution, in Fig.
1.

Since the convergence of the iterative methods de-
scribed is guaranteed with enough iterations, we are in-
terested in the advantages of the multigrid method when
compared to other iterative methods, such as Gauss-
Seidel. The magnitude of the residual is plotted as a
function of the number of iterations used (iterations used
during each smoothing for the V-cycle) for both methods
mentioned in Fig. 2.

CONCLUSION

It is apparent that the 2-grid V-cycle geometric multi-
grid method offers much faster convergence than a direct
Gauss-Seidel iteration. Although this is the most ba-
sic multigrid method, the results were significant. This
can be explored with other direct iterative methods.
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FIG. 1: The V-cycle algorithm (red) plotted against a precise
estimate of the exact solution (blue). The V-cycle algorithm
uses 5 iterations during each relaxation step. The solution
can be improved by increasing the number of iterations used,
or by performing a more complex multigrid cycle.
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FIG. 2: The error of the V-cycle algorithm (blue) plotted
with the error of a direct Gauss-Seidel iteration. The V-cycle
method converges much more rapidly than the Gauss-Seidel
method, as expected.

Using more complex cycles and different prolongation-
restriction operators will also yield different characteris-
tics regarding the convergence.
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