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I. INTRODUCTION

Network robotic systems enjoy an incredibly broad variety of applications, both scientific and commer-
cial. One prominent example arises in oceanography, with the need for groups of Autonomous Underwater
Vehicles (AUVs) [2]. Other examples arise in commercial fields such as the automotive industry, with the
need for communication between self-driving cars [3].

The controllers put forth by Sepulchre et al. have applications in network robotics, where collective
motions can be required to synchronize measurements on certain time and length scales. The limited
communication of agents in harsh environments inspired the study of these controllers with a more flexible
communication network [2].

In this review, seek to provide a succinct yet thorough overview of the motion controllers explored by
Sepulchre et al. in their papers on collective motions of a planar particle model with unrestricted all-to-all
communication between agents. We offer a high level summary of the controllers, and sketches of some
proofs related to their convergence properties.

II. NOTATION

A. Agent Model

In this report, we consider a dynamical system of N identical agents, all of unit mass. The column
vector r ∈ CN denotes the agents’ positions (rk refers to the position of agent k, where rk = xk + iyk). The
column vector θ ∈ SN denotes the agents’ headings (θk refers to the heading angle of agent k measured
counter clockwise from the positive x axis). rk fully defines agent k’s position, while θk defines agent k’s
heading, as shown in Fig. 1.

The center of mass for the system is denoted R ∈ C. Note that, as all agents are identical, R is simply
the average of the elements in r.

All the agents in the network experience a steering controller denoted by the vector u ∈ SN , where for
each agent k, θ̇k = uk.
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FIG. 1: Position and heading of agent k in relation to rk and θk.
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B. Inner Product

Throughout this report, we will be utilizing a standard inner product, which is denoted by 〈·, ·〉. Given
complex numbers z1, z2 ∈ C, the inner product 〈z1, z1〉 = Re(z̄1z2). If instead given the complex column
vectors z, w ∈ CN , the inner product becomes 〈z, w〉 = Re(z̄Tw).

III. CONTENT

A. Steered Agent Model

In this report, we consider the model defined below. Every agent moves at unit speed, and is only
influenced by the steering controller u.

ṙk = eiθk = cos(θk) + i sin(θk) (1)

θ̇k = uk (2)

IV. HIGH LEVEL SUMMARY OF CONTROLLERS

A. Controller 1: Group Linear Momentum

To have the most fundamental notion of control over the agents, we propose a controller that minimizes
or maximizes the total linear momentum. The total linear momentum is minimized when all the agents in
the system travel in a fashion such that the location of the center of mass does not change. We call this
a balanced state. The total linear momentum is maximized when all the agents are traveling in the same
direction. We call this a synchronized (or synced) state.

To create a controller that balances or syncs the agents, we start by defining pθ below in Eq. 3. This
quantity represents the velocity of the center of mass of all agents, and is directly related to the net linear
momentum of the system. We also define our potential function U1 in Eq. 4.

pθ = Ṙ =
1

N

N∑
k=1

ṙk =
1

N

N∑
k=1

eiθk (3)

U1(θ) =
N

2
|pθ|2 (4)

Using the negative gradient controller shown below in Eq. 5, U1 will be brought to one of its critical
points.

uk = −K∂U1

∂θk
(5)

To give some insight into the critical points and their stability properties, we explore our expression for
U1. Note that the critical points occur when ∂U1

∂θk
= 0 ∀k. Two can be accounted for by intuition.

One is the global minimum with |pθ| = 0. This occurs when all the agents are balanced, as defined
at the beginning of this section. This state is locally asymptotically stable when K > 0, and unstable
otherwise.

The other intuitive critical point is the global maximum of U1, corresponding to a synchronized state
with all agents moving with the same heading. This state is locally asymptotically stable when K < 0,
and unstable otherwise.
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To find other critical points, we inspect our expression for the partial derivative.

∂U1

∂θk
= N〈pθ,

∂pθ
∂θk
〉 (6)

We see

∂pθ
∂θk

=
∂

∂θk
(

1

N

∑
k=1

Neiθk) =
1

N
ieiθk (7)

Let pθ = |pθ|eiψ, so that for all critical points we have

0 =
∂U1

∂θk
= |pθ|〈e−iψ, ieiθk〉 (8)

This leads to the condition

0 = sin(θk − ψ) (9)

We can only have agents with heading ψ or the an opposite heading ψ+ π mod 2π, with the majority
of the agents having the former heading. Let 0 ≤ M < N

2 be the number of agents with heading ψ + π
mod 2π. Then we see

|pθ| = |
N −M
N

eiψ +
M

N
ei(ψ+π)| = 1− 2M

N
≥ 1

N
. (10)

The last inequality comes from scenario when all but one agents have opposite headings, leading to the
minimum non-zero average momentum |pθ| = 1

N .
If M = 0, we are in the synchronized state, discussed at the beginning of this section. If M 6= 0, we

then have

∂2U1

∂θk
2 =

1

N
− |pθ| cos(ψ − θk) (11)

This expression is positive if θk = ψ+π, and negative if θk = ψ. Thus, these arrangements are unstable
for all K 6= 0, as they are saddle nodes.

With the steering controller described in Eq. 5, all agents will converge to a linear path, where the
agents are synced if K < 0 and balanced if K > 0. We now define the new steering controller shown in
Eq. 12 which we will call Controller 1. Controller 1 can be thought of as the controller in Eq. 5, but in a
rotating reference frame. What results is the same convergence to a synced state when K < 0, and to a
balanced state when K > 0. However, if ω0 6= 0, the agents travel in circular paths. Simulations with this
controller are presented in Fig. 2.

uk = ω0 −K
∂U1

∂θk
(12)

B. Controller 2: Common Center of Orbit

The first step toward having complete control over the network has been taken, although the previous
controller has very limited applications in the real world. One lacking feature is a common center of orbit
for all agents.

We would now like to motivate the design of a controller that allows all the agents to travel along
circular paths around the same center of orbit. To do this, we will define several useful quantities, and
give a sketch of the analysis of a suitable Lyapunov function.
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(a) Synced agents traveling in a linear path
with w0 = 0, and K = −1

(b) Balanced agents traveling in a linear path
w0 = 0, and K = 1

(c) Synced agents traveling in cirular paths
with w0 = 1, and K = −1

(d) Balanced agents traveling in circular paths
with w0 = 1, and K = 1

FIG. 2: Simulation using Controller 1, defined in Eq. 12, to influence agents be synced or balanced with
linear or circular paths. For each agent, the corresponding colored dot represents its location, and the

attached arrow represents its heading. The red star represents the center of mass of the system.

rk

eiθk

iw−1
0 eiθk

FIG. 3: Circular orbit of agent k traveling with an angular velocity ω0. Since the radius of the circle is
|ω0|−1, the vector from the agent to the center is iω−1

0 eiθk .

For an agent k moving with some constant steering control ω0, the center of its circular orbit is ck =
rk + iω−1

0 eiθk . This can be seen in Fig. 3. For convenience, let sk = −iω0ck = eiθk − iω0rk. Also, let
P = IN − 1

N 11T .
Note that, for any vector u, we have Pu = u−average(u)1N . When all agents orbit a common center,

sk = ξ ∀k for some ξ ∈ C, so Ps = ξ1N − ξ1N = 0N . We will therefore design a controller to minimize the
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quantity Ps. This can be done by considering the Lyapunov function S(r,θ) defined below.

S(r,θ) =
1

2
‖P s‖2 (13)

Along a trajectory, the time derivative of S is

Ṡ = 〈P s, P ṡ〉 = 〈P 2s, ṡ〉 = 〈P s, ṡ〉. (14)

This comes from two properties of P : P is Hermitian matrix, since P = P T , and P ∈ RN×N , and P is
a projection matrix, so P 2 = P . Writing Ṡ as a summation of its components, we have

Ṡ =

N∑
k=0

〈Pks, ieiθk〉(uk − ω0) (15)

In order to use the LaSalle invariance principle, we must have a negative semidefinite Lie derivative of
S. We can accomplish this by choosing a controller such that Ṡ simplifies to a negative constant multiplied
by a squared quantity: uk = ω0 − κ〈Pks, ieiθk〉 . Then

Ṡ = −κ
N∑
k=0

〈Pks, ieiθk〉2. (16)

We see that Ṡ = 0 when s = ξ1N , as desired. We shall omit the calculation, but use the result
〈Pks, ieiθk〉 = −〈ω0r̃k, e

iθk〉 − ∂U
∂θk

where r̃k = rk − R. Details can be found in Sepulchre et al. The
controller then takes the form

uk = κ
∂U1

∂θk
+ ω0(1 + κ〈r̃k, ṙk〉) (17)

where ω0 6= 0 and κ > 0. In this report, we refer to the steering controller in Eq. 17 as Controller 2.
A little about convergence: S is positive definite and proper in the space we consider, and Ṡ is negative
definite about Ps = 0N , so the LaSalle invariance principle guarantees convergence to the largest invariant
set with Ṡ = 0. This set is characterized by 〈Pks, ieiθk〉 = 0 ∀k. With this condition, uk = ω0, and s = ξ1N .

Therefore, with the controller defined by 17, we can bring all agents into a circular orbit around the
same center. One will note, however, that the phase arrangement of the agents has no bearing on the
equilibrium state. A simulation of a system under the influence of Controller 2 is shown in Fig. 4.

FIG. 4: Simulation using Controller 2 defined in Eq. 17 to influence all agents to orbit the same center.
For this simulation, w0 = 1 and k = 1.
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C. Controller 3: Specific Phase Arrangements

To extend the capabilities of Controller 2, which allowed all the agents to orbit the same center, we
present Controller 3. Controller 3 adds the ability to determine the phase arrangements, or spacing of
agents along the circular path.

In order to provide this additional control feature, we introduce an arbitrary smooth potential function
U(θ) with 〈∇U,1N 〉 = 0. With the steering controller defined in Eq. 18, the network will converge to a
configuration where all agents travel along the same circular path, and the phase configuration is such that
the potential function U is at a local minimum.

uk = ω0(1 + κ〈r̃k, ṙk〉)−
∂(U − κ∂U1)

∂θk
(18)

Above, r̃k = rk − R, ω0 6= 0, and κ > 0. To give some insight, we will sketch the analysis of the
Lyapunov function defined below:

V (r,θ) = κS(r,θ) + U(θ). (19)

Along a trajectory, the time derivative of V is given by

V̇ = κṠ + U̇ =
N∑
k=0

κ〈Pks, ieiθk〉(uk − ω0) +
∂U

∂θk
θ̇k (20)

The property 〈∇U,1N 〉 = 0 demanded of U now proves helpful: let us add −ω0
∑N

k=0
∂U
∂θk

= 0.

V̇ =

N∑
k=0

(κ〈Pks, ieiθk〉+
∂U

∂θk
)(uk − ω0) (21)

We can now substitute a useful form for our controller in Eq 18:

uk = ω0 − κ〈Pks, ieiθk〉 −
∂U

∂θk
. (22)

This gives us an expression that is easy to analyze:

V̇ = −
N∑
k=0

(uk − ω0)
2 ≤ 0. (23)

Since V has a lower bound and V̇ is negative definite about the state when uk = ω0 ∀k, trajectories
will converge to the largest invariant set with κ〈Pks, ieiθk〉 = − ∂U

∂θk
. Since uk = ω0 ∀k in this set, we have

constant U , so κ〈Pks, ieiθk〉 = 0. We then arrive at s = ξ1N , so we are again in a state with all agents
orbiting a common center. In addition to synchronizing the center of all agents’ orbits, we now have the
critical set of U to guarantee desired phase arrangements. Stability analysis of the critical set can be found
in Sepulchre et al.

Since the network converges to a phase configuration such that U reaches a local minimum, one simply
needs to design the arbitrary potential function U so that its only local minimum is where θ is in the
desired phase configuration. We now give a few different examples of possible potential functions U that
can lead to desired phase arrangmeents.
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(a) (1,12) (b) (2,12) (c) (3,12)

(d) (4,12) (e) (6,12) (f) (12,12)

FIG. 5: Example (M,N) Patterns with N = 12. In the figures above, each red dot represents a cluster of
agents. Each cluster on the same circle contains the same number of agents (N/M).

1. (M,N) Pattern on a Circular Path

Given a network of N agents traveling along the same circular path, let M be an integer divisor of
N. If the N agents travel along the circle such that they are split among M evenly spaced clusters, their
configuration is described as an (M,N) pattern. Each cluster along the circular path contains (N/M) agents,
all located at the same point traveling in the same direction. For M = 1, all the agents are located at the
same point and travel along the same trajectory. For M = N, all the agents are evenly spaced along the
circular path. Example (M,N) patterns with N = 12 are shown in Fig. 5.

2. Potential Function U for (M,N) Pattern

To achieve circular formations around a common center with (M,N)-pattern phase arrangements, we
use the controller defined in Eq. 18 with the following potential UM,N . A simulation result is presented in
Fig. 6. Analysis of this controller can be found in Sepulchre et al.

UM,N =
M∑
m=1

KmUm,

{
Km > 0 m ∈ {1, ...M}
Km < 0 m = M

(24)

where

Um =
N

2
|pmθ|2, and |pmθ| =

1

mN

N∑
k=1

eimθk . (25)

D. Extensions of Controller 3

After convergence under Controller 3, all agents travel along the same circular path with a certain phase
arrangement. However, there are certain properties that are not determined by Controller 3, and only
depend on the initial position and heading of the agents. In this section, we introduce some modifications
to Controller 3 to add additional features.
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FIG. 6: Simulation using Controller 3 defined in 18.

1. Circular Paths Around a Beacon

With Controller 3, all the agents orbit the same center, however the exact location of this center cannot
be controlled. The controller defined below allows the center of the agents’ orbits to be specified. Suppose
we would like the orbits to be around a location R0. Letting, r̃k = rk − R0, we can use the controller
defined in Eq. 18 with U1 removed.

uk = ω0(1 + κ〈rk −R0, ṙk〉)−
∂U

∂θk
(26)

This controller was inspired by considering a Lyapunov function that was similar to the function pre-
sented in Eq. 19, but with an addition term. This additional term is minimized when the center of the
circular path is at R0. Analysis provided in Sepulchre et al. leads to the result that the system converges
to equilibrium states with phase arrangements in the critical set if U as well as all orbits around R0.

2. Phase timing

After convergence under Controller 3, the phase of agent k as a function of time will be θk(t) = ω0(t−tk0)
mod 2π. All agents will be orbiting a center at the same angular velocity, ω0, in a fixed phase arrangement.
However, the value tk0 that corresponds to the exact timing of each agent’s phase cannot be influenced. A
slight modification can be made to Controller 3 to add this additional capability. For 1 < k < N − 1, the
modified controller is the same as Controller 3. The steering control for the N th agent is replaced by

uN = ω0(1 + κ〈r̃N , ṙN 〉)−
∂(U − κ∂U1)

∂θN
+ d sin(θ0 − θN (t)) (27)

where θN (t) is the desired phase for agent N as a function of time, such that θ̇N = ω0. This function
essentially fixes the phase of agent N as a function of time, and therefore influences the offset of the entire
phase arrangement. A proof of the convergence properties of this controller can be found in Sepulchre et
al.

V. SUMMARY

In order to study the collective motions of robots in a network, we considered a system of N identical
agents, each moving at unit speed, and each with a steering controller. We analyzed several of the steering
controllers proposed in Sepulchre et al. Each of these controllers was inspired by defining a Lyapunov
function that reached a minimum at the desired configuration. Controllers were chosen such that the
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Lie derivative of each Lyapunov potential function was negative semi-definite, resulting in at least local
convergence to the desired configuration.

In Controller 1, we developed the capability to sync or balance agents that are traveling in either straight
or circular paths. In Controller 2, we added the feature to guide all agents to circular orbits around a
common center. With Controller 3, we were able to add the feature of influencing the phase arrangements
of the agents along their common circular orbit. Lastly, we modified Controller 3 so that the location of
the orbits’ centers and phase offset of the agents could be specified. With the rich features provided by
these controllers, agents in a planar robotic network can partake in desirable collective movements for a
variety of applications.
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